Weak Convergence of Martingales and Its Application to Nonlinear Cointegrating Regression Model

Dongsheng Wu

Department of Mathematical Sciences University of Alabama in Huntsville

The 15th International Workshop on Markov Processes and Related Topics Jilin University, July 11-15, 2019 (Based on a Joint Work with Qiying Wang and Ke Zhu)

Dongsheng Wu Weak Convergence of Martingales

イロト イポト イヨト イヨト

Weak Convergence for a Class of Martingales

4 Applications

ヘロト ヘアト ヘビト ヘビト

3

The Semiparametric Nonlinear Cointegrating Regression Model

$$y_t = f(x_t) + u_t,$$

where

- *x_t* : Non-stationary regressor,
- $f(\cdot)$: An unknown function on \mathbb{R} ,
- u_t : An equilibrium error satisfying $\mathbb{E}[u_t|x_t] = 0$.

くロト (過) (目) (日)

The Model (cont.)

- M = {g(x, θ) : θ ∈ Θ₀} : A family of real functions indexed by a vector θ = (θ₁,...,θ_m)' of unknown parameters lying in the compact parameter space Θ₀ ⊂ ℝ^m.
- The problem: Testing the hypothesis $f(\cdot) \in \mathcal{M}$, i.e.,

 H_0 : $\mathbb{E}[y_t - g(x_t, \theta_0) | x_t] = 0$, for some $\theta_0 \in \Theta_0$.

イロン 不得 とくほ とくほ とうほ

In the literature, the null hypothesis H_0 is close to the problem of testing the martingale difference, cf. Stute (1997), Deo (2000), Escanciano (2006) for stationary cases and Park and Whang (2005), Escanciano (2007) and Phillips and Jin (2014) for non-stationary cases.

ヘロト ヘ戸ト ヘヨト ヘヨト

Test Statistic for H₀

We introduce the test statistic for H_0 in two steps. **Step 1:** Define the marked empirical process $\alpha_n(x)$ by

$$\alpha_n(x) = \frac{1}{\sqrt{n}} \sum_{k=1}^n \left[y_k - g(x_k, \widehat{\theta}_n) \right] \mathbb{1}(x_k/d_n \leq x),$$

where

- 0 < d_n → ∞ : A sequence of constants which will be specified later,
- $\hat{\theta}_n$: Nonlinear least square estimator of θ_0 defined by

$$\widehat{\theta}_n := \operatorname{argmin}_{\theta \in \Theta_0} \sum_{k=1}^n (y_k - g(x_k, \theta))^2.$$

ヘロン 人間 とくほ とくほ とう

1

Test Statistic for H_0 (cont.)

Step 2: As in Stute (1997), the test statistic for H_0 is

$$S_n = \sup_{x \in \mathbb{R}} |\alpha_n(x)| = \sup_{x \in \mathbb{R}} \left| \frac{1}{\sqrt{n}} \sum_{k=1}^n \left[y_k - g(x_k, \widehat{\theta}_n) \right] 1(x_k \le x) \right|.$$

Goal: We want to obtain the asymptotic distribution of S_n under H_0 .

ヘロト ヘアト ヘビト ヘビト

ъ

Assumptions on x_t and u_t

Let $\varepsilon_j, j \in \mathbb{Z}$ be a sequence of i.i.d. r.v.'s with $\mathbb{E}[\varepsilon_0] = 0$, $\mathbb{E}[\varepsilon_0^2] = 1$ and $\lim_{|t|\to\infty} |t|^{\eta} |\mathbb{E}[e^{it\varepsilon_0}]| < \infty$ for some $\eta > 0$, and let $\xi_i, j \ge 1$ be a linear process defined by

$$\xi_j = \sum_{k=0}^{\infty} \phi_k \varepsilon_{j-k},$$

ヘロト ヘアト ヘビト ヘビト

Assumptions on x_t and u_t (cont.)

where the coefficients ϕ_k , $k \ge 0$ satisfy one of the following conditions

- LM. $\phi_k \sim k^{-\mu} L(k)$, where $1/2 < \mu < 1$ and L(k) is a slowly varying function at ∞
- SM. $\sum_{k=0}^{\infty} |\phi_k| < \infty$ and $\phi := \sum_{k=0}^{\infty} |\phi_k| \neq 0$. Fact: Define $d_n^2 = \operatorname{Var}\left(\sum_{j=1}^n \xi_j\right)$, by Wang et al. (2003), we have

$$d_n^2 \sim c_\mu n^{3-2\mu} L(n)$$
, under LM, $d_n^2 \sim \phi^2 n$, under SM.

イロト イポト イヨト イヨト 三日

Assumptions on x_t and u_t (cont.)

Assumption 2.1. $x_k = \gamma x_{k-1} + \xi_k$, where $x_0 = 0$ and $\gamma = 1 - \tau/n$ for some $\tau \ge 0$. (x_t is a near integrated short/long memory linear process.) **Assumption 2.2.** (i) For each $k \ge 1$, $\mathbb{E}[u_k | \mathcal{F}_{k-1}] = 0$ and $\sup_{k\ge 1} \mathbb{E}[|u_k|^{2+\eta} | \mathcal{F}_{k-1}] < \infty$ for some $\eta > 0$, where \mathcal{F}_k is an increasing sequence of σ -fields such that $x_k \in \mathcal{F}_k$; (ii) we have

$$\left(\frac{1}{\sqrt{n}}\sum_{k=1}^{[nt]}\varepsilon_k,\frac{1}{\sqrt{n}}\sum_{k=1}^{[nt]}\varepsilon_{-k},\frac{1}{\sqrt{n}}\sum_{k=1}^{[nt]}u_k\right)\Rightarrow (B_{1t},B_{2t},B_{3t}), \text{ on } D_{\mathbb{R}^3}[0,\infty),$$

where $(B_{1t}, B_{2t}, B_{3t})_{t \ge 0}$ is a three dimensional Brownian motion with covariance matrix Ω .

ヘロト 人間 とくほとく ほとう

1

Assumptions on x_t and u_t (cont.)

Remark: Assumption 2.2(ii) ensures the following joint convergence [cf. Buchmann and Chan (2007)]:

$$\left(\frac{1}{\sqrt{n}}\sum_{k=1}^{[nt]}u_k,\frac{x_{[nt]}}{d_n}\right) \Rightarrow (B_{3t},X_t), \text{ on } D_{\mathbb{R}^2}[0, 1],$$

where $X_t \in \mathcal{F}_t$, and

$$X_t = \int_0^t e^{- au(t-s)} dW(s) = W(t) + au \int_0^t e^{- au(t-s)} W(s) ds,$$

ヘロン 人間 とくほ とくほ とう

.

Assumptions on x_t and u_t (cont.)

where $W(t) = B_{1t}$ under **SM**; and $W(t) = W_H(t)$, where

$$W_{H}(t) = c_{H}\left(\int_{-\infty}^{0} \left[(t-s)^{H-\frac{1}{2}} - (-s)^{H-\frac{1}{2}} \right] dB_{2s} + \int_{0}^{t} (t-s)^{H-\frac{1}{2}} dB_{1s} \right),$$

which is a fractional Brownian motion with Hurst index $H = 3/2 - \mu \in (1/2, 1)$, under **LM**.

イロン 不得 とくほ とくほ とうほ

Asymptotics of S_n : Integrable Regression Function

Assumption 2.3. There exist a bounded function h(x) satisfying $h(x) \downarrow h(0) = 0$, as $x \downarrow 0$, and a bounded integrable function T(x) such that for all θ , $\theta_0 \in \Theta_0$,

$$|g(x, \theta) - g(x, \theta_0)| \le h(\|\theta - \theta_0\|)T(x),$$

and

$$\int_{-\infty}^{\infty} \left(g(s,\theta) - g(s,\theta_0)\right)^2 ds > 0 \text{ for all } \theta \neq \theta_0.$$

Some Examples:

$$\theta_1 |x|^{\theta_2} 1(x \in [a, b]), e^{-\theta |x|}, e^{\theta |x|}/(1 + e^{\theta |x|}).$$

ヘロン 人間 とくほ とくほ とう

Asymptotic Distribution of S_n under H_0 : Intrgrable Regression Function (Wang, W., Zhu, 2018)

Theorem

Suppose that Assumptions 2.1-2.3 hold. Then under H₀

$$S_n \to_D \sup_{x \in \mathbb{R}} |\alpha(x)|,$$

where $\alpha(x) = \int_{0}^{1} 1(X_{t} \leq x) dB_{3t}$.

ヘロト 人間 ト ヘヨト ヘヨト

A Remark

Remark: From the above theorem, we can derive that, under H_0

$$S_n = \sup_{x \in \mathbb{R}} \left| \frac{1}{\sqrt{n}} \sum_{k=1}^n u_k \mathbb{1}(x_k \leq x) \right| + o_P(1),$$

indicating that there is no estimation effect under H_0 when the regressor x_t is nonstationary and the regression function $g(x, \theta)$ is integrable. This is due to the fact that nonstationarity weakens the signal when the transformation function is integrable, which differs from the stationary situation, see, e.g., Stute (1997), Escanciano (2006, 2007), Ling and Tong (2011).

イロト 不得 とくほ とくほ とうほ

Asymptotics of S_n : Non-Integrable Regression Function

Assumption 2.3 is somehow restrictive, which exclude some practically useful models such as $g(x, \theta) = \theta x$ and $(x - \theta)^2$. The following Assumptions 2.5-2.6 remove the restriction on the boundedness and integrability of T(x), but impose more smooth conditions on $g(x, \theta)$. Let

$$\dot{g}_i = rac{\partial g(x, heta)}{\partial heta_i}, ~~ \ddot{g}_{ij} = rac{\partial^2 g(x, heta)}{\partial heta_i heta_j}, ~~ 1 \leq i \leq j \leq m.$$

イロト イポト イヨト イヨト

Asymptotics of S_n : Non-Integrable Regression Function (cont.)

Assumption 2.5. Let $p(x, \theta)$ be one of $g, \dot{g}_i, \ddot{g}_{ij}$. There exists a real function $T_p : \mathbb{R} \to \mathbb{R}$ such that

- $|p(x,\theta) p(x,\theta_0)| \le A_p(\|\theta \theta_0\|)T_p(x)$, where $A_p(x)$ is a real function satisfying $A_p(t) \downarrow A_p(0) = 0$ as $t \downarrow 0$;
- for any bounded x

$$\sup_{\theta\in\Theta_0}\frac{|p(\lambda x,\theta)-v_p(\lambda)h_p(x,\theta)|}{T_p(\lambda x)}=o(1),$$

as $\lambda \to \infty$, where for each $\theta \in \Theta_0$, $h_p(x, \theta)$ is a locally bounded function, and $v_p(\lambda)$ is a positive real function bounded away from 0 as $\lambda \to \infty$.

ヘロン ヘアン ヘビン ヘビン

Asymptotics of S_n : Non-Integrable Regression Function (cont.)

• $T_{\rho}(\lambda x) \leq Cv_{\rho}(\lambda) (1 + |x|^{\gamma})$ as $|\lambda x| \to \infty$ for some $\gamma > 0$.

Assumption 2.6. We have

$$\sup_{1\leq i,j\leq m}\frac{v(n)\ddot{v}_{ij}(n)}{\dot{v}_i(n)\dot{v}_j(n)}<\infty, \ \int_{|s|<\delta}\dot{h}(s,\theta_0)\dot{h}(s,\theta_0)'ds>0 \text{ for some } \delta>0,$$

where

$$v(n) = v_g(d_n), \ \dot{v}_i(n) = v_{\dot{g}_i}(d_n), \ \ddot{v}_{ij}(n) = v_{\dot{g}_{ij}}(d_n),$$

$$\dot{h}(\boldsymbol{s}, heta_0) = \left(h_{\dot{\boldsymbol{g}}_1}(\boldsymbol{s}, heta_0), \dots, h_{\dot{\boldsymbol{g}}_m}(\boldsymbol{s}, heta_0)
ight)'.$$

イロト 不得 とくほ とくほ とう

э.

Asymptotics of S_n : Non-Integrable Regression Function (Wang, W., Zhu, 2018)

Theorem

Suppose that Assumptions 2.1-2.2 and 2.5-2.6 hold. Then, under H_0 ,

$$S_n \to_D \sup_{x \in \mathbb{R}} |\beta(x)|,$$

where

$$\beta(x) = \int_0^1 \mathbb{I}(X_t \le x) dB_{3t} - \int_0^1 \mathbb{I}(X_s \le x) \Psi_s' ds \left(\int_0^1 \Psi_u \Psi_u' du\right)^{-1} \int_0^1 \Psi_t dB_{3t},$$

with $\Psi_t = \dot{h}(X_t, \theta_0)$.

ヘロト 人間 ト ヘヨト ヘヨト

Some typical functions that satisfy Assumptions 2.5-2.6:

$$g(x,\theta) = (x+\theta)^2, \ \frac{\theta e^x}{1+e^x}, \ \theta \log |x|, \ \theta |x|^{\alpha} \ (\alpha \text{ is fixed.})$$

イロト 不得 とくほと くほとう

₹ 990

Weak Convergence of Martingales

In this section, we consider weak convergence for a class of martingales, which provides a technique tool in establishing the asymptotic distributions of S_n under H_0 (Theorem 2.1 and Theorem 2.2).

くロト (過) (目) (日)

Weak Convergence of Martingales (cont.)

Let $\{u_k, y_{nk}\}_{k \ge 1, n \ge 1}$ be a triangular array on $\mathbb{R} \times \mathbb{R}$. Write

$$M_n(-\infty) = 0, \ M_n(x) = \frac{1}{\sqrt{n}} \sum_{k=1}^n u_k \mathbb{1}(y_{nk} \le x) \ -\infty < x \le \infty,$$

$$M_{n1}(-\infty) = 0, \ M_{n1}(x) = \frac{1}{n} \sum_{k=1}^{n} g_1(y_{nk}) \mathbb{1}(y_{nk} \le x) - \infty < x \le \infty,$$

$$M_{n2} = \frac{1}{\sqrt{n}} \sum_{k=1}^{n} u_k g_2(y_{nk}), \ M_{n3} = \frac{1}{n} \sum_{k=1}^{n} g_3(y_{nk}),$$

where $g_1(\cdot), g_2(\cdot), g_3(\cdot)$ are locally bounded functions on \mathbb{R} .

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

1

Assumptions

Assumption 3.1. $\{u_k, \mathcal{F}_k\}_{k \ge 1}$ forms a martingale difference satisfying $\sup_{k \ge 1} \mathbb{E}[|u_k|^{2+\eta}|\mathcal{F}_{k-1}] < \infty$ for some $\eta > 0$. **Assumption 3.2.** y_{nk} is adapted to \mathcal{F}_{k-1} for each $n \ge 1$, and

$$\left(\frac{1}{\sqrt{n}}\sum_{j=1}^{[nt]} u_j, y_{n,[nt]}\right) \Rightarrow (U_t, Y_t), \text{ on } D_{\mathbb{R}^2}[0, 1]$$

ヘロン 人間 とくほ とくほ とう

1

Assumptions (cont.)

Assumption 3.3. There exists a $d \in (0, 1)$ such that (i) for each $k \ge 1$ and $n \ge 1$, $(n/k)^d y_{nk}$ has a density $h_{nk}(x)$ which is uniformly bounded by a constant K; (ii) for $j \ge 1$, $n \ge 1$ and $k \ge j + n_0$ for some positive integer n_0 , conditioning on $\mathcal{F}_{nj} = \sigma(y_{n1}, \ldots, y_{nj})$, $[n/(k-j)]^d(y_{nk} - y_{nj})$ has a density $h_{nki}(x)$ which is uniformly bounded by a constant K and

$$\sup_{u\in\mathbb{R}} \left|h_{nkj}(u+t)-h_{nkj}(u)\right| \leq C\min\{|t|,\,1\},\,$$

for $t \in \mathbb{R}$, where C > 0 is a constant.

ヘロン 人間 とくほ とくほ とう

Comments on Assumptions

Assumptions 3.1-3.2 are weak and close to be necessary. Assumption 3.3 is a special version of the strong smooth condition introduced in Wang (2015), which is used to offset the effect of the indicator function $1(y_{nk} \le x)$.

ヘロト ヘ戸ト ヘヨト ヘヨト

Weak Convergence Theorem of Martingales (Wang, W., Zhu, 2018)

Theorem

Suppose that Assumptions 3.1-3.3 hold. Then

 $(M_n(x), M_{n1}(x), M_{n2}, M_{n3}) \Rightarrow (M(x), M_1(x), M_2, M_3) \text{ on } D_{\mathbb{R}^4}[-\infty, \infty],$

where

$$egin{aligned} M(x) &= \int_0^1 1\!\!1(Y_t \leq x) dU_t, & M_1(x) = \int_0^1 g_1(Y_t) 1\!\!1(Y_t \leq x) dt, \ M_2 &= \int_0^1 g_2(Y_t) dU_t, & M_3 = \int_0^1 g_3(Y_t) dt. \end{aligned}$$

イロト イポト イヨト イヨト

The proof for the convergence of finite dimensional distribution is followed from some standard methods (Cramer-Wold device). The proof for the tightness is difficult, and our method is different from those in the literature, e.g., Park and Whang (2005), Escanciano (2007) and Phillips and Jin (2014).

ヘロト ヘ戸ト ヘヨト ヘヨト

Proof for the Tightness of $\{M_{n1}(x)\}_{n\geq 1}$ on $D_{\mathbb{R}}[-\infty, \infty]$ (Sketch)

For $s = 1, 2, \ldots$, define

$$M_{n1}^{(s)}(\theta) = \frac{1}{n} \sum_{k=1}^{n} g_1(y_{nk}) \mathbb{1}(y_{nk} \leq \theta_s),$$

where $\theta_s = j2^{-s}$ if $\theta \in [j2^{-s}, (j+1)2^{-s}], j \in \mathbb{Z}$. Then, it suffices to prove that, for every ε , $\varepsilon_1 > 0$, there exists a positive integer k_0 such that

 $\begin{array}{c} \text{The Problem} \\ \text{Asymptotic Distribution of $\mathcal{S}_{\rm P}$ under $\mathcal{H}_{\rm 0}$} \\ \text{Weak Convergence for a Class of Martingales} \\ \text{Applications} \end{array}$

Proof for the Tightness (cont.)

$$\limsup_{n\to\infty} \mathbb{P}\left[\sup_{\theta\in[-1,1]} |M_{n1}(\theta) - M_{n1}^{(k_0)}(\theta)| \ge \varepsilon\right] \le \varepsilon_1, \qquad (*)$$

$$\limsup_{n\to\infty} \mathbb{P}\left[\sup_{\theta\in[-1,1]} |M_{n1}^{(k_0+1)}(\theta) - M_{n1}^{(k_0)}(\theta)| \ge \varepsilon\right] \le \varepsilon_1.$$
(**)

ヘロト 人間 とくほとく ほとう

₹ 990

 $\begin{array}{c} \text{The Problem} \\ \text{Asymptotic Distribution of \mathcal{S}_n under \mathcal{H}_0} \\ \text{Weak Convergence for a Class of Martingales} \\ \text{Applications} \end{array}$

Proof for the Tightness (cont.)

To prove (*), notice that $g_1(t)$ is locally bounded, we have that, for any $\theta \in [-1, 1]$,

$$|M_{n1}(\theta) - M_{n1}^{(k_0)}(\theta)| \le rac{C}{n} \max_{-2^{k_0} \le j \le 2^{k_0}} W_n(j, k_0),$$

where

$$W_n(j, k_0) = \sum_{k=1}^n 1(j2^{-k_0} \le y_{nk} \le (j+1)2^{-k_0}).$$

イロト 不得 とくほと くほとう

э

Proof for the Tightness (cont.)

Lemma

Suppose that Assumption 3.3 holds, then for any j and s,

$$\mathbb{E}\left[(W_n(j,s))^m\right] \le C_0^m m! (1 + n2^{-s}),$$

where $C_0 > 0$ is a constant independent of n, j and m.

[cf. Lemma 2.5 of Wang (2015)]

イロト 不得 とくほ とくほとう

Proof for the Tightness (cont.)

Now, as $n \to \infty$, by using the Markov's inequality, the Rosenthal's inequality and the above lemma,

$$\mathbb{P}\left[\sup_{\theta\in[-1,\,1]}|M_{n1}(\theta)-M_{n1}^{(k_0)}(\theta)|\geq\varepsilon\right]$$

$$\leq \frac{C}{\varepsilon n}\mathbb{E}\left[\max_{-2^{k_0}\leq j\leq 2^{k_0}}W_n(j,k_0)\right]$$

$$\leq \frac{C2^{k_0/2}}{\varepsilon n}\max_{-2^{k_0}\leq j\leq 2^{k_0}}\left(\mathbb{E}\left[(W_n(j,k_0))^2\right]\right)^{1/2}$$

$$\leq \frac{C2^{k_0/2}}{\varepsilon n}(1+n2^{-k_0})\leq C_1\varepsilon^{-1}2^{-k_0/2},$$

which implies (*) by taking k_0 large enough such that $\varepsilon^{-1}2^{-k_0/2} \le \varepsilon_1$.

1

Application to Asymptotics of S_n under H_0

Corollary

or

Suppose that Assumptions 2.1-2.2 hold. For any locally bounded functions $g_1(x)$, $g_2(x)$ and $g_3(x)$ on \mathbb{R} , we have

$$\begin{pmatrix} \frac{1}{\sqrt{n}} \sum_{k=1}^{n} u_{k} \mathbf{I}(x_{k}/d_{n}), \frac{1}{n} \sum_{k=1}^{n} g_{1}(x_{k}/d_{n}) \mathbf{I}(x_{k}/d_{n}), \frac{1}{\sqrt{n}} \sum_{k=1}^{n} u_{k} g_{2}(x_{k}/d_{n}), \frac{1}{n} \sum_{k=1}^{n} g_{3}(x_{k}/d_{n}) \end{pmatrix}$$

$$\Rightarrow \left(\int_{0}^{1} \mathbf{I}(X_{t} \leq x) dB_{3t}, \int_{0}^{1} g_{1}(X_{t}) \mathbf{I}(X_{t} \leq x) dt, \int_{0}^{1} g_{2}(X_{t}) dB_{3t}, \int_{0}^{1} g_{3}(X_{t}) dt \right),$$

$$\Rightarrow \mathbf{D}_{\mathbb{R}^{4}} \left[-\infty, \infty \right].$$

Proof. By choosing $y_{nk} = x_k/d_n$.

ヘロト ヘアト ヘビト ヘビト

Proof of Theorem 2.1

Theorem 2.1 Suppose that Assumptions 2.1-2.3 hold. Then under H_0

$$S_n \to_D \sup_{x \in \mathbb{R}} |\alpha(x)|,$$

where

$$S_n = \sup_{x \in \mathbb{R}} |\alpha_n(x)| = \sup_{x \in \mathbb{R}} \left| \frac{1}{\sqrt{n}} \sum_{k=1}^n \left[y_k - g(x_k, \widehat{\theta}_n) \right] 1(x_k \le x) \right|,$$

and where $\alpha(x) = \int_0^1 \mathbb{1}(X_t \leq x) dB_{3t}$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Proof of Theorem 2.1 (cont.)

$$\alpha_n(x) = \frac{1}{\sqrt{n}} \sum_{k=1}^n u_k \mathbb{1}(x_k/d_n \le x)$$
$$- \frac{1}{\sqrt{n}} \sum_{k=1}^n \left[g(x_k, \widehat{\theta}_n) - g(x_k, \theta_0) \right] \mathbb{1}(x_k/d_n \le x)$$
$$:= \alpha_{n1}(x) - \alpha_{n2}(x).$$

We can prove

- α_{n1}(x) ⇒ α(x) on D_ℝ[-∞, ∞], by the weak convergence theorem for martingales/the corollary.
- $\sup_{x\in\mathbb{R}} |\alpha_{n2}(x)| = o_p(1).$
- Theorem 2.1 follows from the above two facts and the continuous mapping theorem.

Some Special Examples

Let $\sigma^2 > 0$ be the asymptotic variance of $\frac{1}{\sqrt{n}} \sum_{k=1}^{n} u_k$. We may write the covariance matrix in Assumption 2.2 explicitly as

$$\Omega = \begin{pmatrix} 1 & 0 & \rho_1 \sigma \\ 0 & 1 & \rho_2 \sigma \\ \rho_1 \sigma & \rho_2 \sigma & \sigma^2 \end{pmatrix},$$

recall

$$\left(\frac{1}{\sqrt{n}}\sum_{k=1}^{[nt]}\varepsilon_k, \frac{1}{\sqrt{n}}\sum_{k=1}^{[nt]}\varepsilon_{-k}, \frac{1}{\sqrt{n}}\sum_{k=1}^{[nt]}u_k\right) \Rightarrow (B_{1t}, B_{2t}, B_{3t}), \text{ on } D_{\mathbb{R}^3}[0, \infty).$$

Clearly, the limiting null distribution of S_n heavily depends on the value of ρ_1 and ρ_2 , i.e., the dependent structure between $\{X_t\}$ and $\{B_{3t}\}$.

Some Special Examples: Case 1

Case 1: $\rho_1 = \rho_2 = 0$. We may choose $u_t = \sigma_t \eta_t$, where $\{\eta_j\}_{j \in \mathbb{Z}}$ is independent of $\{\varepsilon_j\}_{j \in \mathbb{Z}}$ and is a sequence of i.i.d. random variables with $\mathbb{E}\eta_1 = 0$, $\mathbb{E}\eta_1^2 = 1$, and $\mathbb{E}|\eta_1|^{2+\gamma} < \infty$ for some $\gamma > 0$, and where

$$\sigma_t \in \sigma(\varepsilon_t, \varepsilon_{t-1}, \ldots; \eta_{t-1}, \eta_{t-2}, \ldots)$$

is a stationary process with $\sigma^2 = \mathbb{E}\sigma_t^2 < \infty$.

ヘロト ヘアト ヘビト ヘビト

Some Special Examples: Case 1 (Wang, W., Zhu, 2018)

Corollary

Let u_t be defined as above. Suppose that Assumptions 2.1 and 2.3 hold. Then, under H_0 ,

$$S_n \rightarrow_D \sigma \sup_{t \in [0, 1]} |B_t|,$$

where $\{B_t\}$ is a standard Brownian motion.

イロト イポト イヨト イヨト

Some Special Examples: Case 2

Case 2: $\rho_1 = 1$, $\rho_2 = 0$. We may choose $u_t = \varepsilon_{t+1}\sigma_t$ where

$$\sigma_t \in \sigma(\varepsilon_t, \varepsilon_{t-1}, \ldots)$$

is a stationary process with $\sigma^2 = \mathbb{E}\sigma_t^2 < \infty$.

イロン 不得 とくほ とくほ とうほ

Some Special Examples: Case 2 (Wang, W., Zhu, 2018)

Corollary

Let u_t be defined as above. Suppose that Assumptions 2.1 holds with $\tau = 0$ and ξ_t satisfying **SM** condition, and Assumption 2.3 holds. Then, under H_0 ,

$$S_n \to_D \sigma \sup_{x \in \mathbb{R}} \left| \int_0^1 \mathbb{1}(B_t \leq x) dB_t \right|,$$

where $\{B_t\}$ is a standard Brownian motion.

ヘロト ヘアト ヘビト ヘビト

Conclusion Remark

- The simulation results agree well with our derivation.
- We also study a real problem: CO2(Carbon Dioxide) Emission v.s. GDP among several countries. Our method also performs well.

ヘロト ヘアト ヘビト ヘビト

æ

Thank You!

Dongsheng Wu Weak Convergence of Martingales

ヘロト 人間 とくほとくほとう