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The Problem

The Semiparametric Nonlinear Cointegrating
Regression Model

yr=f(xt) + ut,
where
@ x; : Non-stationary regressor,
@ f(-) : An unknown function on R,
@ u; : An equilibrium error satisfying E[u;|x;] = 0.
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The Problem

The Model (cont.)

o M ={g(x,0): 6 €Oy} :Afamily of real functions indexed
by a vector 6 = (61,...,0m)" of unknown parameters lying
in the compact parameter space ©y C R™.

@ The problem: Testing the hypothesis f(-) € M, i.e.,

Ho : E[yt — g(Xt,00)|Xt] =0, for some fy € ©g.
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The Problem

A Remark

In the literature, the null hypothesis Hy is close to the problem
of testing the martingale difference, cf. Stute (1997), Deo
(2000), Escanciano (2006) for stationary cases and Park and
Whang (2005), Escanciano (2007) and Phillips and Jin (2014)
for non-stationary cases.
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The Problem

Test Statistic for Hy

We introduce the test statistic for Hy in two steps.
Step 1: Define the marked empirical process ap(x) by

onl) = - 3 [ gt )] 105/0n < ),

where

@ 0 < dy — > : A sequence of constants which will be
specified later,

° 5,, : Nonlinear least square estimator of 6y defined by

n

0, = argmingcg, Z(}’k — 9(xk. 0))>.
k=1
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The Problem

Test Statistic for Hy (cont.)

Step 2: As in Stute (1997), the test statistic for Hy is

Sn = sup |an(x |—sup|f2 Yk—9g xk,en] I(xc < x)|.

xeR

Goal: We want to obtain the asymptotic distribution of S, under
Ho.
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Asymptotic Distribution of S, under Hy

Assumptions on x; and u;

Let ¢, j € Z be a sequence of i.i.d. r.vs with E[eo] = 0,
E[e5] = 1 and lim; . 1|7 |E[e"°]| < oo for some i > 0, and let
&j, j > 1 be a linear process defined by

o0
&= bkEj-k,
k=0
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Asymptotic Distribution of S, under Hy

Assumptions on x; and u; (cont.)

where the coefficients ¢, k > 0 satisfy one of the following
conditions

@ LM. ¢ ~ k~#L(k), where 1/2 < u < 1 and L(k) is a slowly
varying function at co

@ SM. 332 [ok| < coand ¢ := 352 |¢k| # O.

Fact: Define d2 = Var (z;; g,) . by Wang et al. (2003), we
have

a2 ~ Cuns_z“L(n),under LM, 02 ~ ¢?n, under SM.
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Asymptotic Distribution of S, under Hy

Assumptions on x; and u; (cont.)

Assumption 2.1. x, = yxx_1 + &k, Where xo = 0 and
~v=1—17/nfor some 7 > 0. (x; is a near integrated short/long
memory linear process.)

Assumption 2.2. (i) For each k > 1, E[uk|Fx_1] = 0 and
supy~1 E[|ux|>*| Fxk_1] < oo for some 1 > 0, where Fy is an
increasing sequence of o-fields such that x, € Fg; (i) we have

[nt] [nt] [nt]
Z €k —= 26 k= Zuk (Bit, Bat, Bst) , on Dgs[0, 00),

where (B¢, Bot, Bat)~q is @ three dimensional Brownian motion
with covariance matrix €.
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Asymptotic Distribution of S, under Hy

Assumptions on x; and u; (cont.)

Remark: Assumption 2.2(ii) ensures the following joint
convergence [cf. Buchmann and Chan (2007)]:

1 Z[m] (i
nt

JE— u ,

Vnie T dy

where X; € F;, and

) = (BStaXf)a OHDRZ[Oa 1]7

t t
X, = / e "= gW(s) = W(1) + 7 / e~ "(-9) (5)ds,
0 0
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Asymptotic Distribution of S, under Hy

Assumptions on x; and u; (cont.)

where W(t) = By; under SM; and W(t) = Wy(t), where

Wi(t) = cu </0 [(t— 91— (~5)""] aBas + /Ot(t _ s)H—;dB1s> ,

— 00

which is a fractional Brownian motion with Hurst index
H=3/2—pe(1/2,1),under LM.
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Asymptotic Distribution of S, under Hy

Asymptotics of S, : Integrable Regression Function

Assumption 2.3. There exist a bounded function h(x)
satisfying h(x) | h(0) = 0, as x | 0, and a bounded integrable
function T(x) such that for all 6, 6y € ©y,

19(x,60) — g(x; bo)| < h([|6 — bol]) T(x),

and -
/ (g(s,0) — g(s.60))? ds > 0 forall 6 = 6.

—00

Some Examples:

01]x|%1(x € [a, b]), e ™, ¥ /(1 + &?IX]y.
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Asymptotic Distribution of S, under Hy

Asymptotic Distribution of S, under Hy: Intrgrable
Regression Function (Wang, W., Zhu, 2018)

Suppose that Assumptions 2.1-2.3 hold. Then under Hg

Sﬂ — D Sup ]a(X)|,
XeR

where a(x) = f01 1(X; < x)dBs;.
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Asymptotic Distribution of S, under Hy

A Remark

Remark: From the above theorem, we can derive that, under
Ho

Sn:SUp +OP(1)7

XeR

1 n
n Z U I(Xx < X)
k=1

indicating that there is no estimation effect under Hy when the
regressor x; is nonstationary and the regression function g(x, 6)
is integrable. This is due to the fact that nonstationarity
weakens the signal when the transformation function is
integrable, which differs from the stationary situation, see, e.g.,
Stute (1997), Escanciano (2006, 2007), Ling and Tong (2011).
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Asymptotic Distribution of S, under Hy

Asymptotics of S, : Non-Integrable Regression
Function

Assumption 2.3 is somehow restrictive, which exclude some
practically useful models such as g(x, #) = 6x and (x — 6)2.
The following Assumptions 2.5-2.6 remove the restriction on
the boundedness and integrability of T(x), but impose more
smooth conditions on g(x, 0).
Let
. 9g(x.0) .  0°g(x,0)
o0 T 000

L1<i<j<m
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Asymptotic Distribution of S, under Hy

Asymptotics of S, : Non-Integrable Regression
Function (cont.)

Assumption 2.5. Let p(x, #) be one of g, g;, g;. There exists a
real function T, : R — R such that
@ |p(x,0) — p(x,60) < Ap(]|60 — bol|) To(x), where Ap(x) is a
real function satisfying Ap(t) | Ap(0) =0ast]0;
@ for any bounded x
[P(AX, ) — Vp(A)hp(X, 0)]
su =0(1),
s 7o) M)
as A — oo, where for each 6 € ©q, hp(x, 6) is a locally
bounded function, and v,(\) is a positive real function
bounded away from 0 as A — ~c.
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Asymptotic Distribution of S, under Hy

Asymptotics of S, : Non-Integrable Regression
Function (cont.)

@ Tp(Ax) < Cvp(A) (1 + |x|7) as |Ax| — oo for some v > 0.

Assumption 2.6. We have

v(n)v;(n) ; ; /
sup ——~——~ < 00, h(s, 6p)h(s,0)'ds > 0 forsome § > 0,
1§i,j2m vi(nv;(n) |s|<5 (5, 60)(s o)

where
v(n) = vg(dn), Vi(n) = vg,(dh), Vj(n) = vg,(dn),

h(s,00) = (hg,(s,00),- .-, hg,(s,60)) -
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Asymptotic Distribution of S, under Hy

Asymptotics of S, : Non-Integrable Regression

Function (Wang, W., Zhu, 2018)

Theorem

Suppose that Assumptions 2.1-2.2 and 2.5-2.6 hold. Then,
under Hy,

Sn —p sup |B(X)],
XeR

where

1 1 1 =1
,B(x):/ 0 < x)dB3,—/ (Xs < x)w;ds(/ wuw{,du> / WdBy,,
Jo 0 JO JO

with V; = h(Xt, 90)
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Asymptotic Distribution of S, under Hy

Remark

Some typical functions that satisfy Assumptions 2.5-2.6:

oex g -
T e 0log | x|, 0]x|* (cis fixed.)

9(x,0) = (x + 0), T
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Weak Convergence for a Class of Martingales

Weak Convergence of Martingales

In this section, we consider weak convergence for a class of
martingales, which provides a technique tool in establishing the
asymptotic distributions of S, under Hy (Theorem 2.1 and

Theorem 2.2).
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Weak Convergence for a Class of Martingales

Weak Convergence of Martingales (cont.)

Let {uk, Yok }k>1,n>1 be a triangular array on R x R. Write

n

’
Mp(—o0) = 0, My(x) = 7 > Uy < X) — 00 < X < 0,
k=1

1 n
Mpi(—00) = 0, Mpi(x) = 5291 (V) 1Yk < X) —00 < X < o0,
pa

1 n 1 n
Mo = /n Z Uk92(Ynk), Mng = n 293(Ynk)a
k=1 k=1

where g¢(-), g2(+), g3(+) are locally bounded functions on R.
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Weak Convergence for a Class of Martingales

Assumptions

Assumption 3.1. {ux, Fx }x>1 forms a martingale difference
satisfying supy E[|uk[>*7|Fk_1] < oo for some 1 > 0.
Assumption 3.2. y, is adapted to Fx_1 foreach n> 1, and

[nt]

NG > Ui Yo | = (Un, Yo),  on Dge[0, 1].
j=1
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Weak Convergence for a Class of Martingales

Assumptions (cont.)

Assumption 3.3. There exists a d € (0, 1) such that (i) for
each k > 1and n> 1, (n/k)%y, has a density hpx(x) which is
uniformly bounded by a constant K; (ii) forj > 1, n> 1 and

k > j+ ng for some positive integer ng, conditioning on

Foj =Y, Ynp), [n/(k = )]°(Vak — ¥nj) has a density
hni(x) which is uniformly bounded by a constant K and

suﬂg |hoii(u + 1) — hnii(u)| < Cmin{[t], 1},
ue

for t € R, where C > 0 is a constant.
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Weak Convergence for a Class of Martingales

Comments on Assumptions

Assumptions 3.1-3.2 are weak and close to be necessary.
Assumption 3.3 is a special version of the strong smooth
condition introduced in Wang (2015), which is used to offset the
effect of the indicator function 1y, < x).
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Weak Convergence for a Class of Martingales

Weak Convergence Theorem of Martingales (Wang,
W., Zhu, 2018)

Suppose that Assumptions 3.1-3.3 hold. Then
(Mn(X), Mm (X)7 Mng, Mn3) = (M(X), M1 (X), /Wg7 Mg) on D]R4[—oo7 OO],

where

1 1
M(x)—/o 1(Y; < x)dUk, M1(x)—/o g1 (YOU(Ys < x)dt,

1 1
Mz—/o go(Yr)dUt, Ms—/o gs(Yr)dt.

Dongsheng Wu Weak Convergence of Martingales



Weak Convergence for a Class of Martingales

Proof

The proof for the convergence of finite dimensional distribution
is followed from some standard methods (Cramer-Wold
device). The proof for the tightness is difficult, and our method
is different from those in the literature, e.g., Park and Whang
(2005), Escanciano (2007) and Phillips and Jin (2014).
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Weak Convergence for a Class of Martingales

Proof for the Tightness of {M,1(x)},>1 on Dr[—o0, o]
(Sketch)

Fors=1,2,..., define

1 n
MD(6) = — >~ g1(Ym) WYk < 65),
k=1

where 0 = j27°if 0 € [j275, (j+ 1)275],j € Z. Then, it suffices
to prove that, for every e, ¢4 > 0, there exists a positive integer
ko such that
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Weak Convergence for a Class of Martingales

Proof for the Tightness (cont.)

Iimsup]P’[ sup  [Mp(6) — MU (9)] 26] <e, (%)
n—o0 oe[—1,1]
limsupP [ sup |M,(,’1‘°+1)(0) — M,(,f°)(0)| > g] <eq. (%)
n—o0 oe[—1,1]
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Weak Convergence for a Class of Martingales

Proof for the Tightness (cont.)

To prove (x), notice that g4(t) is locally bounded, we have that,
forany 6 € [-1, 1],

max  Wy(j, ko),

C
M 0) — M(ko) 9)| < —
| n1( ) m ( )| TN _ok<i<oko

where

Wh(j, ko) = 211(12 o <y < (j+1)2770).
k=1
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Weak Convergence for a Class of Martingales

Proof for the Tightness (cont.)

Suppose that Assumption 3.3 holds, then for any j and s,
E[(Wh(j,8))™] < Cg'm!(1 + n27%),

where Cy > 0 is a constant independent of n, j and m.

[cf. Lemma 2.5 of Wang (2015)]
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Weak Convergence for a Class of Martingales

Proof for the Tightness (cont.)

Now, as n — oo, by using the Markov’s inequality, the
Rosenthal’s inequality and the above lemma,

P[ sup Mn1(9)—M£§°)(e>rzs]
oe[—1,1]

IN

C .
mIE[ max W,,(/,ko)]

—2fo<j<2ko

ko /2
Scin max <E[(Wn(j,k0))2]>

—2f<j<2bo
C2ko/2
<

1/2

(1 +n2~%) < Cre~127 /2,

which implies (x) by taking ky large enough such that
e 12-k/2 <eq.
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Applications

Application to Asymptotics of S, under Hy

Corollary

Suppose that Assumptions 2.1-2.2 hold. For any locally
bounded functions gi(x), g2(x) and gs(x) on R, we have

( Z U XXy / dn), Z 91 (X /dn)W(X /dn), — Z Uk G2 (X /dn), Z 93(X/dn) )

=(/ "1, < x)dBay, / " g 000X < e, / " ga(X)0By;, / Lot

on Dp4[—o0, 0].

Proof. By choosing y.x = Xx/dh.
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Applications

Proof of Theorem 2.1

Theorem 2.1 Suppose that Assumptions 2.1-2.3 hold. Then
under Hy
Snh —p sup |a(x)],
xeR

where

Sn = sup |an(x)| = sup
XER XER

)

1 < -
\/ﬁ; [,Vk - g(Xkaen)] ]I(Xk < X)

and where a(x) = f01 1(X; < x)dBs;.
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Applications

Proof of Theorem 2.1 (cont.)

1 n
an(x) =7 ; ukl(Xg/dn < X)

Z { (Xk, On) g(xk,eo] I(xx/dn < X)

= Oém(X) - anZ(X)'
We can prove
@ api(X) = a(x) on Dr[—o0, o], by the weak convergence
theorem for martingales/the corollary.
® SUPyer |n2(X)| = 0p(1).
@ Theorem 2.1 follows from the above two facts and the
continuous mapping theorem.
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Applications

Some Special Examples

Let o2 > 0 be the asymptotic variance of ﬁ > h_q Uk. We may
write the covariance matrix in Assumption 2.2 explicitly as

1 0 P10
Q=10 1 poo |,
p1o p2o o2
recall

[nt] (] [nt]
Z €k —= Z&? ks = Z Uk | = (Bit, Bat, Bat) , on Dgs[0, o0).

Clearly, the limiting null distribution of S, heavily depends on
the value of py and po, i.e., the dependent structure between
{Xt} and {Bs:}.
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Applications

Some Special Examples: Case 1

Case 1: p; = po = 0. We may choose u; = o, where {1;}cz
is independent of {¢;}cz and is a sequence of i.i.d. random
variables with Eny = 0, En2 = 1, and E|n|**” < oo for some
~v > 0, and where

ot € o(et, €41y M=, Nt—2,- - -)

is a stationary process with 02 = Eo? < oc.
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Applications

Some Special Examples: Case 1 (Wang, W., Zhu,
2018)

Corollary

Let u; be defined as above. Suppose that Assumptions 2.1 and
2.3 hold. Then, under Hy,

Sh —p o sup |Bi,
tel0,1]

where { B} is a standard Brownian motion.
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Applications

Some Special Examples: Case 2

Case 2: p1 =1, po = 0. We may choose u; = ¢;, 10t where
ot € U(Et, Et—1y.- )

is a stationary process with 02 = Eo? < occ.
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Applications

Some Special Examples: Case 2 (Wang, W., Zhu,
2018)

Corollary

Let u; be defined as above. Suppose that Assumptions 2.1
holds with - = 0 and &; satisfying SM condition, and
Assumption 2.3 holds. Then, under Hy,

Sn —p osup
XeR

)

1
/ ]I(Bt < X)dBt
0

where {B;} is a standard Brownian motion.
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Applications

Conclusion Remark

@ The simulation results agree well with our derivation.

@ We also study a real problem: CO2(Carbon Dioxide)
Emission v.s. GDP among several countries. Our method
also performs well.
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Applications

Thank Youl!

Weak Convergence of Martingales
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